
Contents

1 Objectives and Constraints 1
1.0.1 Performance Versus Objectives 1

2 Implementation 3
2.1 Hardware Connections . 4
2.2 Test Circuit . 5
2.3 Power Usage . 5
2.4 Output File Format . 7
2.5 Example Results . 7
2.6 Verification . 7
2.7 Sample Rate Calculation . 7
2.8 Single Pole Transient Detection 11

2.8.1 Setting the Threshold . 11
2.9 PPS Rising Edge Detection . 13

3 Design Considerations 15
3.1 Adding More Channels . 15
3.2 Channel Crosstalk . 16
3.3 Filename Limitations . 17

4 Major Challenges 18
4.1 Portenta H7 . 18
4.2 Feather F405 . 18

Glossary 20

1

LAMDA, the Lightweight Automatic
Multichannel Data Acquisition System

Liam Hays

November 25, 2022

Chapter 1

Objectives and Constraints

The system is intended to sample each channel at aminimumof 100 kilosamples
per second (ksps). Analog to digital conversion (ADC) resolution of 16 bits per
sample is desired, but the chosen hardware only supports 12 bits (9 real) per
sample resolution.

The systemmust sample either four or six channels, to support the following
data:

• Record to SD card 2 (or optionally 4) radiometer signals

• Optionally record one microphone channel

• Sample one pulse-per-second (PPS) signal from a GPS receiver

The PPS channel does not need to be saved, only the relationship between
the start of the recorded signal and the rising edge of the PPS.

The system should not allow recording, or even run detection, unless it is
armed by an input digital signal. On assert the system starts to monitor a single
channel for a rising edge, andupondetecting that event caches asmany samples
as the memory size allows. Once that cache is full, the system stops capturing
samples and writes cache to the micro secure digital (µSD) card. The system
then reinitializes itself and, if still armed, will begin detection again.

1.0.1 Performance Versus Objectives
As Table 1.1 shows, as the number of channels increases, both the number of
samples per channel and the total recording time decreases. This table was
generated with the script from Section 2.7.

1

Sampled chan. Recorded chan. Samples/chan. Record 𝑡 (ms)
3 2 111111 288
5 4 66666 240
6 5 55555 230

Table 1.1: Maximum samples and recording time on each channel for channel
counts specified in objectives.

2

Chapter 2

Implementation

An Adafruit Feather STM32F405 development board and a PPS signal from a
global positioning system(GPS) receiver comprise a systemknownas lightweight
automatic multichannel data acquisition (LAMDA). A short name was chosen so
that the projects data files on the µSD card (whose names start with the project
name) would fit within the 8.3 filename format constraint of the µSD filesystem
library.

On startup, LAMDA configures the STM32F405 chip and its internal periph-
erals, then enters a waiting state where it waits for the arming pin to go high.
The arming pin is a single digital input pin read by a state machine in the code
on the chip. When the pin goes high, the state is changed and direct memory
access (DMA) begins, from the internal ADC peripheral to memory.

LAMDA transfers one block at a time from the ADC to memory. Once LAMDA is
armed, the Feather initiates circular DMA from the ADC peripheral into a small
buffer in the STM32F405’s internal static random access memory (SRAM). This
DMA transfers only 1024 bytes per channel into the small buffer before looping
around and reading new data from each channel. The DMA peripheral on the
Feather generates interrupts when a transfer is half complete and complete. A
block is defined to be the amount of data transferred to the small buffer at the
triggering of either of these interrupts. Therefore, the small buffer contains two
blocks. The callback for these interrupts changes the global state of a state ma-
chine, instructing it to process a particular ADC channel through a OnePole (see
Section 2.8) filter and look for the PPS rising edge. LAMDA counts the number
of samples since the last PPS rising edge to provide an accurate timebase for the
recorded data, see Figure 2.1.

Once the OnePole filter finds a sufficiently large rise on one channel in a
block, recording is enabled. Instead of processing new data through detectors,
the state machine copies blocks from the small buffer to a large buffer in mem-
ory when either DMA interrupts trigger. When the large buffer is full, DMA is
stopped and the data in the large buffer is written to a new file on the µSD card.
LAMDA then returns to the inactive state, where it looks for the arming pin to be
enabled.

3

ADC peripheral DMA controller

small buffer in SRAM

half-c
omplete

 interru
pt

block 1 block 2

On both interrupts:
 - detect PPS rising edge
 - detect transient edge with OnePole
If transient found, instead copy to big buffer on interrupt

big buffer in SRAM

Once big buffer is full, copy contents to file on microSD
card and return to armed state

Figure 2.1: LAMDA DMA process

The very first block read by the ADC contains useless data, because the volt-
ages inside the ADC peripheral (likely consisting of series capacitors that must
be charged) have not settled yet. This data often triggers both the PPS rising
edge detector and the OnePole filter, which could cause recording to start too
early. Therefore, LAMDA keeps track of whether or not the DMA has just trans-
ferred the very first block of ADC samples to memory, and will not process the
very first block.

2.1 Hardware Connections
The Feather is connected as shown in Figure 2.2.

The “oscilloscope outputs” shown in Figure 2.2 are used for testing and in-
dicate the start of both ADC blocks and the time needed to process one block’s
data through the OnePole filter and the PPS detector. These signals are used to
generate the graph in Figure 2.4.

The data from analog input connected to the PPS signal is not saved in the
large buffer nor written to the µSD card. This enables more data on the other
two channels to be recorded in the large buffer before needing to write to the
µSD card.

4

PPS from GPS unit
Input 1 (fed to filter)

Input 2

USB for programming

Arming input
Oscilloscope outputs

Analog inputs

Figure 2.2: Feather F405 hardware connections

2.2 Test Circuit
Figure 2.3 shows how the Feather is connected physically. All power is pro-
vided through the type C universal serial bus (USB-C) port on the Feather. In a
production-ready system, powerwould be supplied to the Feather via the black
JST connector. The connector is designed for lithium ion polymer rechargeable
batteries, and the power system on the Feather can recharge these batterieswith
power from USB-C.

If a lithium ion polymer battery is not available, regulated 5 V can be sup-
plied to the pin labeled USB, or voltage from about 3.7 V to 4.2 V can be sup-
plied to the pin labeled Bat. To disable the entire system, pull the En pin low,
which will disable the onboard regulator and cause the system to draw negli-
gible amounts of power.

2.3 Power Usage
The data in Table 2.1 was measured using a USB-C power meter, and both the
meter and LAMDA were powered by an “always on” laptop USB-A port.

Recording lasts only about 150ms, so the 235mWused during that time can
be considered a peak power draw. For all other times, 189 mW for the Feather
alone is an accurate estimate of LAMDA’s power usage.

5

Figure 2.3: Adafruit Feather STM32F405 connected to a u-blox SAM-M8Q GPS
module (providing a PPS signal). Analog channel 0 is connected to PPS, channel
1 is connected to a switch between 3.3 V and GND for testing the OnePole filter,
and channel 2 is connected to a voltage divider.

State Power (mW)
Dearmed 163
Armed, not recording 189
Armed, recording 235
Dearmed, powering GPS with fix 350

Table 2.1: Power usage of the entire Feather test circuit.

6

2.4 Output File Format
The files generated by LAMDA consist of a file header followed by the contents of
the big buffer. The header consists of several fields, each described in Table 2.2.

Raw data Bytes Purpose
LAMDA 5 Project identification
0xDEADBEEF 4 Determine endianness of current system
Format version 1 File format version used, unsigned int
Number of channels 1 Number of ADC channels recorded in file,

unsigned int
Bits per channel 1 Number of sampled bits of each channel
Samples since PPS 8 Number of samples since last PPS rising

edge, unsigned long

Samples - Data, first sample, first channel, second
channel, …then second sample …

Table 2.2: Individual components in LAMDA file header

2.5 Example Results
Figure 2.4 shows the contents of one LAMDA data file plotted against time.

A Python script parses the header in the file and uses it to configure the
graph display.

2.6 Verification
Figure 2.4 has a visible PPS rising edge on channel 0 at about 64 ms. The Python
script that generated the plot processes the samples since PPS field in the file
header and converts it to seconds, displayed in the title of the graph. 64ms +
0.934 s is equal to 0.998 s, which is sufficiently close to 1 s to show that the PPS de-
tector is working. The 0.002 s of error comes from measuring the edge location
on the graph with a mouse pointer.

2.7 Sample Rate Calculation
The number of sampled channels is not the same as the number recorded. The
recorded number of channels is 𝑘chan. The maximum recording length, at two
bytes per sample, depends on the amount of memory. The Feather has 128
accessible kilobytes of random accessmemory (RAM), so themaximumnumber
of samples possible assuming no other memory usage is 64 ks. The per-channel

7

0 20 40 60 80 100 120 140
Time (ms)

0

1000

2000

3000

4000

Co
un

ts

LAMDA007.BIN 0.934642 s since PPS

Channel 0
Channel 1
Channel 2

Figure 2.4: A plot of three ADC channels in LAMDA. Note that Channel 0 contains
a PPS rising edge—this channel was enabled for testing to verify that the edge
detector was working. This channel would not be recorded in real use.

8

Table 2.3: Sample rates of recorded signals. The recording time 𝑡 is an upper
bound for 𝑘chan = 2 recorded channels if all 128 kB were allocated to cache.

𝑎scale 𝑛chan 𝑓𝑠 𝑡 ms (max)
2 3 444 444.4 72.0
4 3 222 222.2 144
6 3 148 148.1 216
8 3 111 111.1 288

maximum samples is 64 ks/𝑘chan. For a typical value of 𝑘chan = 2 this is 24 ks.
Table 2.3 summarizes the maximum potential recording duration as a function
of clock divider.

Calculation of the sample frequency is surprisingly opaque. The Feather
has a system clock frequency of 𝑓sys = 168MHz. This signal passes through
a divider with a value of four to produce the peripheral bus clock at 72MHz.
The ADC clock is divided by the ADC clock prescaler, which can be set to either
2, 4, 6, or 8, called 𝑎scale here. It takes some clock cycles to acquire a sample–one
cycle per bit plus a settling time of 15 cycles, for a total of 27 cycles. In one read
operation, the ADC cycles through all the inputs to sample, or 𝑛chan channels.
All together, each channel is sampled at frequency 𝑓𝑠.

Table 2.3 was calculated with the Python script , listed
here:

APB2clk = 72e6
may need d i f f e r e n t number o f c y c l e s i f b i t s != 12
b i t s = 12
s e t t l eCy c l e s = 15
conversionCycles = s e t t l eCy c l e s + b i t s
numChan = 3

Bu f f e r l e n g t h
numChanSaved = 2
maxBufferBytes = 128e3
bytesPerSample = 2

print (”Clock␣Divider ” ,
”Channel␣Sample␣Rate” ,
”Max␣Length␣(ms)”)

for clkDiv in [2 , 4 , 6 , 8] :
channelSampleRate = (

APB2clk/ clkDiv / conversionCycles /numChan)
recordingDuration = (

1e3 ∗ (maxBufferBytes /
(bytesPerSample ∗ numChanSaved ∗ channelSampleRate)))

print (clkDiv , channelSampleRate , recordingDuration)

9

APB2clk = 72e6
may need different number of cycles if bits != 12
bits = 12
settleCycles = 15
conversionCycles = settleCycles + bits
numChan = 3

Buffer length
numChanSaved = 2
maxBufferBytes = 128e3
bytesPerSample = 2

print("Clock Divider",
 "Channel Sample Rate",
 "Max Length (ms)")
for clkDiv in [2,4,6,8]:
 channelSampleRate = (
 APB2clk/clkDiv/conversionCycles/numChan)
 recordingDuration = (
 1e3 * (maxBufferBytes/
	(bytesPerSample * numChanSaved * channelSampleRate)))
 print(clkDiv, channelSampleRate, recordingDuration)

Figure 2.5: LAMDA’s oscilloscope outputs while armed and not recording. The
green plot changes state at the start of a new block, so there are 8 blocks be-
tween the two dashed lines. The yellow line goes high at the start of the PPS and
OnePole processing, and goes low when both detectors finish. The yellow line
shows that both filters take a fraction of the time required to transfer the next
block from the ADC.

Figure 2.5 shows 8 blocks (on the green line) transferred from the ADC to
memory in 36.84 ms (displayed in white text at the bottom of the graph). A
new block has been transferred to the small buffer by the DMA. Therefore, the
periods of high and low on the green signal represent one block. Eight blocks
in 36.84 ms gives 4.605ms per block, and with 3 channels in use, a block is
1536 samples. 1536 samples/4.065 ms gives 333 550 samples per second total,
and 333 550/3 = 111 183 samples per second per channel, accurate to 4 signifi-
cant digits to the calculated value in Table 2.3.

In addition, the fact that the PPS detector is working and can be shown on
the graph in the correct timebase is further evidence that the sample rate has
been correctly calculated.

10

2.8 Single Pole Transient Detection
This section was written by Park Hays, please direct questions and comments
to him. The signals measured on the ADC are all positive only. We model these
as some signal of interest with a fast-rising and probably slow-falling signal
added to some randomnoise. This filter attempts to identify the rising edge of a
signal that is unlikely to have been generated by noise. We assume the relatively
steady background can be treated as a constant signal. To compare the signal to
a threshold, wefirst have to remove that background. This is accomplishedwith
a discrete single-pole filter. This filter is implemented so that the background
is

𝑦[𝑛] = 𝛼𝑦[𝑛 − 1] + 𝛽𝑥[𝑛] = 𝛼𝑦[𝑛 − 1] + (1 − 𝛼)𝑥[𝑛]. (2.1)
The pole, or cutoff frequency, is

𝑓𝑐 = 𝑓𝑠
ln(𝛽)
−2𝜋 , (2.2)

where 𝑓𝑠 is the sample rate.
The filter is implemented in single precision floating point, rather than fixed

point logic, to avoid instability for low frequency cutoff designs.
A similar single-pole filter is applied to the residual signal (𝑟[𝑛] = 𝑥[𝑛] −

𝑦[𝑛]) which, unless a signal is occurring, is noise. Section 2.8.1 shows how
a threshold ℎ can be set. Detection occurs when 𝑟[𝑛] > ℎ. Since ℎ is always
positive, this threshold also requires 𝑟[𝑛] to be positive, which makes sense for
a rising additive signal. The moving average of the magnitude residual is 𝑟ℎ𝑜,
and is calculated

𝜌[𝑛] = 𝛼MAV𝜌[𝑛 − 1] + 𝛽MAV𝑟[𝑛]. (2.3)
The separate filter parameters 𝛼MAV and 𝛽MAV might be different from the con-
stant subtraction or the same–they are defined separately for flexibility.

2.8.1 Setting the Threshold
Assuming that the near-constant background has been removed by the filtering
process previously described, the remaining signal upon which to perform de-
tection will be normally distributed with zero average value and 𝜎2 variance.
Call this signal 𝑦[𝑡], or when we’re being cavalier about the discrete sampling
of the signal 𝑦(𝑡). Ideally we would like to estimate 𝜎 by running a moving
average on the 𝜎2; and then taking the square root of that averaged value. Un-
fortunately, the square root operation is relatively computationally costly. The
solution in this software is to perform amoving average on the |𝑟[𝑡]|. Remember
that 𝑟 ∼ 𝒩(0, 𝜎2) and so the average value of |𝑟[𝑡]| is

𝔼(𝑟) = ∫
∞

0
2 𝑥

√2𝜋
exp(−𝑥2

𝜎2) d𝑥

= 𝜎
√2𝜋

.
(2.4)

11

Fortunately, the result is trivially related to the underlying distribution param-
eter 𝜎 .

Our objective is to set the threshold as low as possible to maximize sensi-
tivity while simultaneously keeping the probability of incorrectly recording a
signal due to noise tolerable. To work out this problem we imagine that a mis-
sion is a relatively short period of time where a recording is wanted, this is the
mission duration 𝑡mission, which we will assume is 5min for this discussion. We
want the probability of starting a recording due to noise during a mission to
very low, so assume 𝑃𝑓 𝑎-mission ≤ 0.001. The system is collecting data on the
monitored channel at 𝑓𝑠 samples per second. The first step is to determine the
per-sample probability of false alarm that achieves the desired mission proba-
bility of false alarm. The mission probability of false alarm is the one minus the
probability that the test threshold was not exceeded on the first sample and it
was not exceeded on the second sample and so on for all samples taken during
the mission. In other words,

𝑃𝑓 𝑎-mission = 1 − (1 − 𝑃𝑓 𝑎-sample)
𝑓𝑠𝑡mission . (2.5)

We can assume 𝜎 is known since we estimate a term closely related to it. If we
set a threshold ℎ then the per-sample probability of exceeding that threshold
simply due to noise is

𝑃𝑓 𝑎-sample = 1
2

⎛⎜
⎝

1 + erf⎛⎜
⎝

ℎ
𝜎√2

⎞⎟
⎠

⎞⎟
⎠

. (2.6)

Equation (2.6) can be solved for ℎ,

ℎ = erfc (2𝑃𝑓 𝑎-sample − 1) 𝜎√2. (2.7)

Finally, to set a threshold based on some constant times a mean absolute value
(which is what we actually estimate),

ℎMAV = ℎ√2𝜋
𝜎

= erfc (2𝑃𝑓 𝑎-sample − 1) 2√𝜋
(2.8)

Pleasingly, this does not actually rely on what the 𝜎 is! If we use a five minute
mission operating at a sample rate of 116 666.7Hz, and tolerate a mission prob-
ability of false alarm of 𝑃𝑓 𝑎-mission = 0.001 then we find a our threshold multiplier
to be ℎMAV = 6.53. This is the smallest value to consider.

Python code to accomplish this is in and listed here:

import numpy as np
from sc ipy . spe c i a l import er f , e r f c

From Mathemat ica
In [2] := I n t e g r a t e [(2 x/(sigma Sqr t [

12

import numpy as np
from scipy.special import erf, erfc

From Mathematica
In[2]:= Integrate[(2 x/(sigma Sqrt[
2 \[Pi]])) Exp[-(x^2)/(sigma^2)],
{x, 0, \[Infinity]}]

Out[2]= ConditionalExpression[
sigma/Sqrt[2 \[Pi]], Re[sigma^2] > 0]

Pfa_mission = 0.001
fs = 116666.7
missionDuration_min = 5

missionDuration = missionDuration_min * 60
missionDuration_samples = missionDuration * fs

Pmission = 1 - (1-Pfa_sample)^numberSamples,
solve for Pfa_sample
(1-Pmission) = (1-Pfa_sample)^n
log(1-Pmission)/n = log(1-Pfa_sample)
1 - exp(log(1-Pmission)/n) = Pfa_sample
Pfa_sample = 1 - np.exp(
 np.log(1-Pfa_mission)/missionDuration_samples)
print("Probability of a sample exceedance: ", Pfa_sample)

Pfa_sample = 0.5*(1 + erf(thresh/(sigma*sqrt(2))))
thresh = erfc(2*Pfa_sample - 1) * sigma * sqrt(2)

Calculate the multipliers
threshMult = erfc(2*Pfa_sample -1)*2*np.sqrt(np.pi)
print("Minimum multiplicative threshold: ", threshMult)

2 \[Pi]])) Exp[−(x^2)/(sigma ^2)] ,
{x , 0 , \[I n f i n i t y]}]
#
Out[2]= Cond i t i o n a l E x p r e s s i o n [
sigma / Sqr t [2 \[Pi]] , Re [sigma^2] > 0]

Pfa_mission = 0 .001
f s = 116666 .7
missionDuration_min = 5

missionDuration = missionDuration_min ∗ 60
missionDuration_samples = missionDuration ∗ f s

Pmiss i on = 1 − (1−Pfa_samp l e)^numberSamples ,
s o l v e f o r P f a_samp l e
(1−Pmiss i on) = (1−Pfa_samp l e)^n
l o g (1−Pmiss i on)/n = l o g (1−Pfa_samp l e)
1 − exp (l o g (1−Pmiss i on)/n) = Pfa_samp l e
Pfa_sample = 1 − np . exp(

np . log(1−Pfa_mission)/missionDuration_samples)
print (” P robab i l i t y ␣ of ␣a␣sample␣exceedance : ␣” , Pfa_sample)

P fa_samp l e = 0 .5∗(1 + e r f (t h r e s h /(sigma∗ s q r t (2))))
t h r e s h = e r f c (2∗ P fa_samp l e − 1) ∗ sigma ∗ s q r t (2)

C a l c u l a t e t h e m u l t i p l i e r s
threshMult = e r f c (2∗Pfa_sample −1)∗2∗np . sq r t (np . pi)
print (”Minimum␣mu l t i p l i c a t i v e ␣ threshold : ␣” , threshMult)

2.9 PPS Rising Edge Detection
The PPS detector determines if the numerical difference between two ADC sam-
ples exceeds a predefined threshold. The PPS rising edge should rise effectively
instantaneously, so the difference between even two samples should be de-
tectable. However, using unsigned integers means that there is a risk that a
subtraction operation could underflow and create a false detection. Code like
the following poses this risk:

i f (sample − lastSample > PPS_RISE_THRESHOLD) {
// PPS r i s i n g edge de tec t
risingEdgeFound = true ;

}

This snippet would be wrapped by a loop that iterates over one channel’s
samples in the newest block, and the variable lastSample is updated with the

13

previous value of sample on each iteration. The subtraction done in the if state-
ment is likely done as an unsigned subtraction if both variables are unsigned,
as they are in LAMDA, so there is a possibility of underflow.

The solution is to adapt the if statement as follows:

i f (sample > PPS_RISE_THRESHOLD &&
lastSample < PPS_RISE_THRESHOLD) {

This accomplishes the same comparison with no risk of underflow.

14

Chapter 3

Design Considerations

There are three main design structures: 1) write data to the SD card as it is
digitized, 2) store data in RAM until cued then fill RAM once and write out to
µSD, or 3) continuously digitize but process for a transient and store a fixed
length record upon detection. Each option offers benefits and challenges which
table 3.1 summarizes.

The minimum data rate needed is about 100 ks/s.
The largest contiguous section of RAM on the STM32F405 is 128 kB. As-

suming 100 kHz sample rate, two bytes per sample, and two channels, we get
400 kB/s permitting storage for about 1/3 of a second. This is actually sufficient
if we can detect the event, but is not enough if it has to be externally cued. The
rate calculation is straightforward, but fully detailed with 𝐾chan channels, an
overall sample rate 𝑟 shared between the channels, 𝑏 bytes per sample,

data rate = 𝐾chan [channel] 𝑏 [bytes
sample] 𝑟 [sample

second] (3.1)

= 2 [channel] 2 [bytes
sample] 100 × 103 [sample

second] (3.2)

= 400 kB/s = 391KiB/s (3.3)

Note that the assumption of two channels assumes the PPS signal is pro-
cessed into a short list sample indices associated with the PPS rising edges.

The Portenta H7 has 1MB of RAM, and so could theoretically support about
2.6 seconds of continuous recording of two channels. This is too short to make
continuous or cued recording a possibility.

3.1 Adding More Channels
Adding more channels would allow for recording from more sensors, but less
data per sensor. LAMDAwill sample every channel but is still constrained by the

15

Table 3.1: Summary of major design options.
Option Technical Advanges Technical Disadvantages
1 Direct-to-
µSD

Store very long sequences.
Simple implementation.

Simultaneous transfers from
the ADC and to µSD may strain
bus bandwidth.

2 RAM once
cued

Very simple implementation.
No risk of bus contention due
to simultaneous input and
output.

Length of sequence limited by
amount of RAM. Latency in
cue delivery system is chal-
lenging.

3 Detect
event in
signal

Optimal length of storage
in memory. Pre-segmented
signals. Large number of
records possible.

Development and test of de-
tection algorithm is challeng-
ing.

size of the large buffer. Therefore, the recording time for one file will be shorter,
as the large buffer will fill faster than it would with fewer channels.

The time needed to run the PPS detector and the OnePole filter is minimal
compared to the time needed to acquire one block, so adding more channels
will not interfere with processing. Adding more channels will actually reduce
the number of samples that must be processed in one block, so the detectors
would actually run faster.

3.2 Channel Crosstalk
One result of the internal design of the ADC is electrical crosstalk between chan-
nels. If one channel is driven higher than other channels, those other channels
will read as artificially high values. The inverse is also true if one channel is
pulled lower than the other channels.

One solution to this problem is to place the channels physically farther apart.
The STM32F405 has more than enough discrete ADC channels to use channels
on pins that are farther apart (for example, channels 0 and 4, with no channels
connected between), so that the crosstalk is decreased. However, it may be
necessary to actually sample the unused channels for this to have any effect,
which would significantly decrease the sample rate.

Another possibility is that the test breadboard that the Feather board is con-
nected to (see Section 2.2). This setup uses female header and jumper wires
into a breadboard, making it a noisy and unreliable circuit. The crosstalk may
be less significant if the Feather is soldered into a complete system.

16

3.3 Filename Limitations
The filesystem library used by LAMDA, known as FatFs, is limited to filenames
in the 8.3 format, like LAMDA000.BIN. Therefore, LAMDA can record a maximum
of 1000 files before it will enter an error state. 1000 files is sufficient for several
minutes of recording, but if more files are needed, the code can be modified to
support different filenames.

17

Chapter 4

Major Challenges

4.1 Portenta H7
I set up the Arduino Portenta H7 to capture 16-bit samples on 3 channels and
DMA them to a buffer in memory. I achieved this by using STM32CubeIDE, the
official STMicroelectronics development system, and using its graphical chip
configuration tool to generate code for the ADC and DMA peripherals. I then
attempted to use the ARM mbed OS (used by the Arduino framework on the
Portenta H7), which provides a serial peripheral interface (SPI) µSD card inter-
face to store the data in memory on an SD card. However, I proved this to be
too slow, primarily because it uses the SPI mode of the secure digital standard
(flash memory card) (SD) card, which is 1-bit and lower clock speed than the
secure digital input/output interface (SDIO) mode. The official Arduino frame-
work library for STM32 SD card access, known as STM32SD, does not support the
Portenta H7. The only way to get usable SD card speeds from the board would
be to use the hardware abstraction layer (HAL) with STM32CubeIDE.

Unfortunately, the Portenta H7 board cannot be easily programmed with
STM32CubeIDE. Most STM32 chips, including the one on the Portenta H7, in-
clude a region of read-only memory (ROM) that contains a universal serial bus
(USB) device firmware update (or upgrade) (DFU) bootloader, allowing arbi-
trary user code to be uploaded to the chip. While the Portenta H7 contains this
ROM, it can only be enabled by inserting the board into a larger carrier board and
manipulating a dual in-line package (DIP) switch on the carrier board, which
are fragile and difficult to use. The bootloader pre-loaded on the Portenta H7
is designed only to work with ARM mbed OS compatible code, making the H7
a dead end.

4.2 Feather F405
The solution was to use the Adafruit Feather STM32F405. This board exposes
numerous analog and digital pins on the chip, as well as the pin that enables

18

the bootloader in ROM. I continued by using Arduinowith some code generated
by STM32CubeIDE.

Testswith the F405 show SDwrite speeds of about 6MB/s, which is in theory
fast enough for continuous data streaming to the SD card. However, in practice,
the system cannot write this quickly. In testing the write of the ADC data, the
function call to write data to the SD card does not always complete before an-
other block is transferred to memory. Once this happens, the memory card (or
the internal file buffer, or even the SDIO peripheral onboard the STM32F405)
appears to crash and can never write more data. Even when the write runs
without exceeding the time limit, the data on the card is often incomplete or
nonexistent.

I then decided to stop using Arduino, as I felt it was adding too much bloat
and complexity to the code, and switched to pure HAL code in STM32CubeIDE.
I thought that enabling DMA on the SDIO peripheral would helpmake the SD card
write faster, but it instead caused the card to become unusable. I gave up on SD
DMA after struggling for multiple weeks with no success.

This is when the direction of the project changed, from being a continuous
recorder to a detection-triggered recorder. With the OnePole filter, LAMDA de-
tects significant variation on a particular analog channel and records as much
data as will fit in its RAM. This data is then written to the SD card, creating small
gaps in data where the card is being accessed.

Despite what I was able to do with the Feather, it comes at the cost of the
STM32F405 having only a 12-bit ADC, not 16-bit like on the Portenta H7. It also
has much less RAM than the Portenta, so the total recording time is shorter than
the Feather is capable of. I would like to reimplement LAMDA on a board like the
Portenta H7, to get the benefits of better, newer hardware.

19

Glossary

µSD micro secure digital 1, 3, 15, 16, 18

ADC analog to digital conversion 1, 3, 4, 7–11, 13, 16, 18, 19

DFU device firmware update (or upgrade) 18

DIP dual in-line package 18

DMA direct memory access 3, 4, 10, 18, 19

GPS global positioning system 1, 3

HAL hardware abstraction layer 18, 19

JST Japan Solderless Terminal, a company that makes removable electric con-
nectors 5

LAMDA lightweight automatic multichannel data acquisition 3–5, 7, 8, 10, 14,
15, 17, 19

PPS Class of signals typical in the global positioning system where one pulse
is emitted on the second . 1, 3, 4, 6–8, 10, 13, 15, 16

RAM random access memory 7, 15, 16, 19

ROM read-only memory 18, 19

SD secure digital standard (flash memory card) 1, 15, 18, 19

SDIO secure digital input/output interface 18, 19

SPI serial peripheral interface 18

SRAM static random access memory 3

USB universal serial bus 18

USB-C type C universal serial bus 5

20

	Objectives and Constraints
	Performance Versus Objectives

	Implementation
	Hardware Connections
	Test Circuit
	Power Usage
	Output File Format
	Example Results
	Verification
	Sample Rate Calculation
	Single Pole Transient Detection
	Setting the Threshold

	PPS Rising Edge Detection

	Design Considerations
	Adding More Channels
	Channel Crosstalk
	Filename Limitations

	Major Challenges
	Portenta H7
	Feather F405

	Glossary

